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SUMMARY

In [1] we reduced the solution of a classical boundary-value problem, namely the biharmonic equation in a rectangular
domain, to a Cauchy formulation. The theory was developed in the context of elementary thin plate theory. It was
shown that a rectangular plate with three edges clamped and the fourth edge free can be completely described by a
system of integro-differential equations subject to initial values. In this paper we prove the converse, ie., that any
solution of the Cauchy system is a solution of the biharmonic equation, completing the equivalence.

1. Introduction

In recent publication [1] we studied the reduction of a classical elliptic boundary-value
problem, namely the biharmonic equation in a rectangular domain, to a Cauchy or, initial-
value formulation. The theory was developed in the context of elementary thin plate theory.
Using ideas of invariant imbedding [2] it was shown that a rectangular plate with three edges
clamped and the fourth edge free can be completely described by a system of integro-differential
equations subject to initial values. Classical reciprocity relations were proved in the context
of the invariant-imbedding theory and some applications of the fundamental solution were
considered. ‘

Interest in the reduction of boundary-value problems to initial-value formulations is stimulat-
ed by both theoretical and practical considerations. In the first place, since boundary-value
problems cannot generally be solved directly by numerical methods, a reduction to an initial-
value formulation, for which many standard procedures are available, is of considerable
numerical interest. On the other hand, since structural perturbations are at the basis of in-
variant imbedding, this theory offers a natural, unified device to study the solution of many
types of equations in terms of non-classical variables such as length, thickness and physical
constants [3].

These, among other reasons, show the necessity of developing a rigorous approach on which
to base the invariant imbedding procedures used in the reduction of boundary-value problems
to initial-value formulations. This paper is a step in that direction. Using the results obtained
in [ 1], we prove the converse i.., that every solution of the Cauchy system satisfies the original
boundary-value problem thus completing the equivalence.

2. The Problem

Consider the deflection of a thin rectangular plate clamped at the edges x=0, y=0 and y=1
and subject to moments, m(y), normal to the free edge x =a and vertical forces n(y) along this
edge. The deflection is given by the biharmonic equation

Viw=w o+ 2w, +w, =0,

xXXyy yyyy

subject to the boundary conditions
w(0,y) =w(x,0) =w(x,1) =0,
we(0, )= w,(x, 0) = w,(x, 1)=0,
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and
wxx(as y) = m(y) b

wxxx(a’ y)+2wxyy(a3 y) = n(y) Y

where we have assumed the Poisson ratio of the material to be zero.

We can express w via the superposition
1

w(x, y) = S: v(x, y, a, o)n(c)do + L u(x, y, a, o)m(o)do ,

where u and v satisfy

Viu=0
V4 =0,
subject to

Uy (@ y,a,0)=—-6(y—o),

Uyg

(
ulll(a7 ya a, O')+ 2“122(0, y’ a’ 0-) = O H
(a,y,a,0)=0,

( 2

V1114 ), 4, 0')+ U122(a=y9aa 0')= ~5(.})_0-)’
and .
u(0,y,a,0)=u(x,0,a,06)=u(x,1,a,6)=0,

v(0,y,a,0)=v(x,0,0,0)=v(x,1,a,0)=0,
u1(0, y, a, 6) = uy(x,0,a,0) =uy(x,1,a,0) =0

0,(0,y,a,0)=1,(x,0,a,06)=v,(x,1,a,6)=0
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)

for 0< 6 < 1,0< x< a, where 6(t) is the Dirac delta function. Note we have explicitly included
the dependence of both u and v on the length of the plate, a, and we have adopted the notation
u;, i=1,2,3,4, to denote partial differentiation with respect to the ith variable of u. We seek
solutions for u and v since w can be obtained directly via the above superposition.

3. The Invariant Imbedding Method [1]

The invariant imbedding method regards the length of the plate, a, as the independent variable
and keeps the value of x fixed. Hence we examine u(x, y, g, o) and v(x, y, a, ¢) for values of
a=x. The invariant imbedding method proceeds in two parts. First for a=0 we solve

1

pi(a, y,06) = 6(y—0) + 40 p(a, y, n)p22(a, n, o)dy

1
- L q(a, y, 1) r2222(a, n, o)dn

1
q:(a, y,0) = p(a,y,0) + 2J0p(a, v, 1) 42,(a, 1, 0)dn

1
- JO q(a, y,1)s2222(a, 1, 0)dn ,

1

rl (aa y’ U) = p(aa ya U) + 2 50 T(a, y, W)Pzz(aa 17’ U)dﬂ

1
— jo s(a, ¥, 1) r2222{a, 1, 0)dn ,
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s1(a, y, 0) = q(a, y, 6)+r(a, y, 6)

1 1
+ 2J r(a’ Y. 77) qz2 (a> 1, G)dﬂ - J o S(aa Y, ’7)52222((15 1, O’)d’l H

]
subject to initial conditions
(0. y,0)=4(0,y,0)=r(0,y,0) =500, y,0)=0,
and auxiliary conditions
p(a,y,0)=qla,y,0)=r(a,y,0)=s(a, y,0)=0,

if y=0,10r 6=0, 1.
Then at a=x we adjoin the equations

1

03 (x’ y’ a, 0) = 2J0 e(x’ y’ aa 17) p22(a’ 173 "')dﬂ

1
- JO l/I(x7 y7 aa 17) r2222 (a9 173 G)dﬂ )

1
l/13(x’ y’ a’ 0) = e(x’ y’ a’ 0) + 2 JO G(X, ya a7 ’7)‘122(‘1, 179 U)dﬂ

1
- J. o lp(x’ y,a, 17) 52222(a= n, U)dﬂ 3

1
us (x,y,a,0) =2 jou(x, ¥, a,1) P2z (a, 1, o)dy
1
—J o U(x’ Y, a, 17) r2222(a9 , U)dﬂ s
1

U3 (x7 y? a’ U) = u(x’ y’ a’ O') + zjo u(xs y? a7 17)422(‘19 173 O')dﬂ

- j: v(x, ¥, a,1)3222(a, 1, 0)dy
subject to the initial conditions
0 (x, v, x,0)=p(x, y, 0),
¥(x, y, %, 0)=4q(x, y,0),
u(x, y,x,0)=r(x,y, 0),
v(x,y,x,0)=s(x, y, g},

and the auxiliary conditions

0 (x,p,a0)=y¢ (x,y,a,0)=u (x,y,a,6)=0 (x,y,a,0)=0,
0,(x, y, a, @) = Y,(x, y, a, 0) = u,(x, y, a, 6) = v,(x, y, a,6) =0

3

of a.

4. Validation
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(14)

(15)

(16)

(22)

if y=0, 1. The entire set of equations, (8)~(11), (14)—(17), is then integrated to the desired value

We will now show that any solution of (8)—(22) is a solution of the original system (1)—(7). First

we will show
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0(x, y, a,0)=ux,y,a,o) (23)
W(xs ya a, G) = Ul (xa ya a, 0) . (24)
Differentiating (16) and (17) with respect to x, we have

1
ug3(x, . a, U) = 2‘»’-0 ul(x’ y, a, W)Pzz(a, 1, O')d}’] s (25)

i .
- J-O Ul (x’ y> a, U) r2222(a7 ’7’ U)dﬂ

and
1

Ul3 (x5 y’ au O-) = ul(xa y5 a7 O-) + 2 jo ul (xa y: aa ’1)‘122(‘% na U)dﬂ

1
- jo Uy (xa Yy, a, ’1) SZZZZ(Q5 , U)d’? . (26)
We see then by comparison with (14) and (15) that 4, and v, satisfy the same differential equa-
tions as 6 and y. Direct differentiation of (22) yields

u, (x,y,a,0)=v; (x,y,a,0)=0,

Uyy(x, ¥, a,0)=0v4,(x, y,a,0)=0. (27)
if y=0,1 or 6=0, 1, so that the auxiliary conditions also agree. To show that the initial condi-
tions are the same, we start by differentiating (20) with respect to x,

uy(x, y, x, 0y =ry(x, y, 6)—us(x, y, x, 9) . (28)
Using (10) and (16), with a=x, in (28) we find

ul(xa ya X, a)=p(x, y5 0'). (29)
Using (21), (11) and (17) in the same manner we have

vy (x, ¥, x,0)=q(x, y, 0} . (30)
Since the above two relations hold for all x, the equations defining #; and v, are exactly the
same as those for § and  so (23) and (24) must hold.

We will now show that u and v satisfy the boundary conditions of (3)—(7). We start by taking
x=0 in (15), (17), (20), (21) and (22). Thus, u(0, y, a, ¢) and v(0, y, a, o) satisfy

1
00,300 = 2 | 0,30, 1)psae . o)

1
- j.O 'U(O, ya a, ’1) S2222 (a’ ’7’ U)dﬂ E]

R 1
U3 (0, y, a, 0') = u(Oa' y) a, 0‘) + 2j.0 u(O, y’ a, ’7)‘]22(“: ’1’ U)dﬂ

- S: v(0, v, a, 1) s3222(a, 1, 0)dn (31)
subject to
u(0,y,0,0)=0,
v(0,5,0,0)=0, (32)
and

u 0,y,a,0)=0v (0,y,a,0)=0,
uZ(Oa ¥, a, 0')=U2(0, y, a, 0')=0, (33)

if y=0,1 or 6=0, 1. Egs. (31)-(33) define a homogeneous initial value problem with zero

Journal of Engineering Math., Vol. 6 (1972) 117-123



Equivalence of a Cauchy system and a class of boundary-value problems 121

initial conditions, thus we must have
u(0,y,a,0)=0,
v(0,y,a,06)=0, (34)

for all a. The rest of the conditions of (7) follow by a similar argument.
To prove (3)—(6) we proceed as follows. We start by differentiating with respect to x.

U (x, y, x, 6) = —uy5(x, y, x, 6)+p,(x, ¥, ), (35)
and via (23)
U1 (x, 3, x,0) = —03(x, y, x, 6)+p; (x, y, 6) . (36)
| Using (8) and (14) with a=x in (36) we find
Uy (%, ,x,0)=6(y~0), . 37
which since it is valid for all x, is (3). In a similar manner, from (30), (9) and (15) we find (5) or
v11(X, ¥, x,0)=0. (38)

To prove (4) we differentiate (37) with respect to x.

uy11(x, ¥, X, 0) = uy15(x, y, x, 0) . (39)
Differentiating (16) twice with respect to x, we find for a=x,

1
ug13(x, v, x, o) =2 J.o ugy (x, , x, np22(x, 1, 0)dy

1
- jo 11 (% ¥s X, 1) 72222 (%, 1, 0)dny . (40)
then by (37) and (38)
u113(X, ¥, X, 6) = 2Py, (x, y, 0) - (41)
Differentiating (29) twice with respect to y we find

U122 (%, ¥, X, 0) = P2, (X, ¥, o). 42)
Finally combining (39), (41) and (42) we have
uy11(% ¥, X, 0)+2u;5,(x, y, X, 0) =0, (43)

which is (4). Eq. (6) follows by similar reasoning.
We now have to show the u and v satisfy the biharmonic equation. We start by differentiating
(43)

Urr11 (X ¥, X, 0)+2u4122(X, 3, X, 0) = —uy115(% ¥, X, 0)—2u;553(x, ¥, X, 0). (44)

Differentiation of (16) yields for a=x

1
u1113(x, s X, 0') = 2.[0 ulll(x5 ¥y, x, "I)Pzz(xs n, O')d"l

1
- jo 0111(x> V. X, "l) r2222(X, n, O')d'l - (45)

and
1

Ui223(x. ¥, X, o) =2 jo Uy (X, ¥, X, ) P2a (X, 1, O')d"l

1
- jo V122X, ¥, X, 1) 2222 (%, 1, 0)dn . (46)
Combining these two equations,
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1
“1113(3‘, Y, X, 0')+2u1223(xa ¥, %,0) =2 jo [“111(’% ¥, X, ’7)+2“122(xa Y, X, ﬂ)]Pzz(xa 1, 0)dn

1
- j‘o [D111(x, ¥, x, 11)+211122(x, Y, %, 6)] =T1322,5(x, 1, 0)dn . (47)

In view of the boundary conditions, (4) and (6), (47) becomes
U113(% ¥, X, 0)+2u;523(X, Y, X, 6) = 73522(x, y, 0) - (48)
Differentiation of (20) gives us the equation

Uzz22(X, ¥, X, 0)= "zzzz(xa ¥,0). (49)

Combining (44), (48) and (49) we have

Uy111 (%, Yo X, 0)+ 201125 (X, Y5 X, 0)+4p225(x, y, X, 0) =0, (50)
so that the biharmonic equation holds at the edge. We repeat the argument to show

V1111 (% Y5 X, 0)+201122(%, ¥, X, 6)+03225(X, ¥, X, 6)=0. (51)
To prove that the biharmonic equation is satisfied at internal points, we form the two functions.

a(x,y,a,0)=uy111(%, ¥, 8, 0)+2uy15,(%, ¥, a, 0)+t3555(x, y, a, 0), (52)

B(x,y,8,0)=0y111(% Y, a4 6)+ 20115, (x, ¥, a, 6)+ 0355, (x, y,a, 6) . (53)
Clearly by (50) and (51)

a(x, y,x,06)=0,

B(x,y,x,0)=0. (54)

We will find initial value problems for « and 8. Differentiation of (52) with respect to @ yields

a3(X, y, a, 6) = uy1113(%, ¥, 4, 0')+2“11223(xa »a a)+u22223(x, ¥, a,0). (55)

Each of the terms on the right of (55) can be evaluated by repeated differentiation of (16), i.e.

1
u11113(x, y, a, 0') =2 L u1111(x> y, a, ’7)P22(0> 1, U)dﬂ

1
- jo V1111 (%, ¥, @, ) 72222 (a, 1, 0)dn

1

Uy1223(X, y,8,0) = 2 L ur122(x, 3, a, W)Pzz(aa 1, 0)dn

1
- L V2222(% ¥, @, 1) r2222(a, 1, o)dn . (56)

Adding these terms and using (52) and (53) we have

1 1
a3(x, y,a,0) = 2 (0 a(x, ¥, @, 1) p22(a, 1, o)dn — L Bx, y, &, mraz2(a, m, o)y . (57)

Similarly we find

1

ﬁ3(x> ya a, O') = a(xa y; a, 6) + 2 J‘ a(xa ya a, n)qZZ(a9 77, U)dﬂ

]
1
- yo B(x, ¥, a, 1) S2222(a, 1, 6)dn . (58)
From (22) we find
a(x, y, a,0)= B(x, y, a, 6) = #3(x, y, 4, 6) = B> (x, y, 4, 6) =0, (59)
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ify=0, 1ore =0, 1. Thus,(54),(57),and (58)and (59)define a homogeneous initial value problem
with a zero initial condition and therefore we have

afx,y,a,0)=0,

.B(x’ y, a, O')=0, (60)
or

V4u(x, y,a,06)=0,

Vi (x, y,a,06)=0, (61)

and the verification is complete.
5. Conclusion

We have shown the equivalence between a certain classical boundary-value problem and a
certain Cauchy system. The practical importance of this result is that the Cauchy system can be
readily treated by a number of standard numerical techniques, as opposed to boundary-value
problems which are not in general amenable to direct numerical treatment. At the same time,
a number of theoretical advantages are associated with Cauchy formulations, especially those
related to the study of semi-group properties in terms of non-classical imbedding variables
such as length, thickness or physical constants. Future papers will deal with the details of
numerical procedures.
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