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a Class of Boundary-Value 

SUMMARY 
In [1] we reduced the solution of a classical boundary-value problem, namely the biharmonic equation in a rectangular 
domain, to a Cauchy formulation. The theory was developed in the context of elementary thin plate theory. It was 
shown that a rectangular plate with three edges clamped and the fourth edge free can be completely described by a 
system of integro-differential equations subject to initial values. In this paper we prove the converse, i.e., that any 
solution of the Cauchy system is a solution of the biharmonic equation, completing the equivalence. 

1. Introduction 

In recent publication [1] we studied the reduction of a classical elliptic boundary-value 
problem, namely the biharmonic equation in a rectangular domain, to a Cauchy or, initial- 
value formulation. The theory was developed in the context of elementary thin plate theory. 
Using ideas ofinvariant  imbedding [2] it was shown that a rectangular plate with three edges 
clamped and the fourth edge free can be completely described by a system ofintegro-differential 
equations subject to initial values. Classical reciprocity relations were proved in the context 
of the invariant-imbedding theory and some applications of the fundamental solution were 
considered. 

Interest in the reduction of boundary-value problems to initial-value formulations is stimulat- 
ed by both theoretical and practical considerations. In the first place, since boundary-value 
problems cannot generally be solved directly by numerical methods, a reduction to an initial- 
value formulation, for which many standard procedures are available, is of considerable 
numerical interest. On the other hand, since structural perturbations are at the basis of in- 
variant imbedding, this theory offers a natural, unified device to study the solution of many 
types of equations in terms of non-classical variables such as length, thickness and physical 
constants [3]. 

These, among other reasons, show the necessity of developing a rigorous approach on which 
to base the invariant imbedding procedures used in the reduction of boundary-value problems 
to initial-value formulations. This paper is a step in that direction. Using the results obtained 
in [1], we prove the converse i.e., that every solution of the Cauchy system satisfies the original 
boundary-value problem thus completing the equivalence. 

2. The Problem 

Consider the deflection of a thin rectangular plate clamped at the edges x =0,  y =  0 and y =  1 
and subject to moments, re(y), normal to the free edge x = a and vertical forces n(y) along this 
edge. The deflection is given by the biharmonic equation 

V4w = wxxxx + 2wxxyy + wyyyy = 0 ,  

subject to the boundary conditions 

w(O, y) = w(x, O) = w(x,  1) = 0 ,  

w (O, y) = w,(x,  o) = w,(x,  1) = o ,  
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and  
w~x (a, y) = m (y) , 

w=,,:(a, y)+ 2w:,,y(a, y)= n(y) , 

E. Angel, N. Distefano 

where we have assumed the Poisson ratio of the material to be zero. 
We can express w via the superposition 

w (x, y) = v (x, y, a, a) n (a) da + u (x, y, a, a) m (a) da,  

where u and v satisfy 

V4u = 0 (1) 

V 4 v = 0,  (2) 

subject to 

ul, (a, y, a, a) = - 5 ( y - a ) ,  (3) 

ulll(a, Y, a, a) + 2U12z (a, y, a, a) = 0,  (4) 

vll  (a, y, a, o-)= 0 ,  (5) 

V~ll (a, y, a, a) + 2vi 22 (a, y, a, o-) = - 6 ( y -  a) ,  (6) 
and 

u (0, y, a, a) = u (x, O, a, a) = u (x, 1, a, a) = O, 

v (0, y, a, a) = v (x, 0, a, a) = v (x, 1, a, o-) = 0 ,  

U 1 (0, y, a, o-) = I/2 (X, 0 ,  a, a) = u 2 (x, 1, a, a) = 0 

vl (0, y, a, a) = v2 (x, O, a, o) = v z (x, 1, a, ~) = 0 (7) 

for 0 < a < 1, 0 < x < a, where 5 (t) is the Dirac delta function. Note we have explicitly included 
the dependence of both u and v on the length of the plate, a, and we have adopted the notation 
u~, i=  1,2,3,4, to denote partial differentiation with respect to the i th variable of u. We seek 
solutions for u and v since w can be obtained directly via the above superposition. 

3. The Invariant Imbedding M e t h o d  [1] 

The invariant imbedding method regards the length of the plate, a, as the independent variable 
and keeps the value of x fixed. Hence we examine u (x, y, a, o) and v (x, y, a, o) for values of 
a >= x. The invariant imbedding method proceeds in two parts. First for a>__ 0 we solve 

(8) 

(9) 

(lo) 

p,(a,y ,~)  = 6 ( y - ~ )  + 2 11o p(a,y, tl)P22(a, tha)dq 

S q~(a, y, a) = p(a, y, ~) + 2 p(a, y, r/)q22(a, t/, o)an 
o 

- flo q(a,Y, tl)s2222(a, thcr)dtl, 

r l ( a , y , a ) =  p(a,y,o)  + 2110 r(a,y,~l)P22(a,~l, 4drl 

(' 
,10. 
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s x (a, y, a) = q (a, y, o') + r (a, y, a) 

+ 2flor(a,y,q)qz2(a,~l,a)d~-iXoS(a,y,~l)s222z(a, rl, o)d~, (11) 

subject to initial conditions 

p(0, y, ~r) = q(0, y, a) = r(0, y, a) = s(0, y, tr) = 0 ,  (12) 

and auxiliary conditions 

p(a, y, a) = q(a, y, a) = r(a, y, tr) = s(a, y, o-) = 0 ,  (13) 

if y = 0 ,  1 or  o-=0, 1. 
Then at a = x we adjoin the equations 

f' o 3 ( x . y . a . ~ ) =  2 O(x . y .a .~ )p22(a . , .~ )d ,  
o 

- O(x. y. a. ,)r2222(a. ~. ~)d~. (14) 
o 

O3(x.y.a.a)  = O(x.y .a.~)  + 2 O(x.y.a.~)q22(a., .cOd~ 
o 

- O(x. y. a . . ) s2~2(a .  ~. ~)d.l. (15) 
o 

u~ (~. y. a. ~) = 2 u(x. y. a..1)p2~(a. '7. o)d.7 
o 

f l v(~. y. a. n)r2~(a. ,. ~)d, (16) 
o 

f l u(x. y. a. t/)q22(a, t/. ~)dt/ va (x. y. a. cr) = u(x. y. a. ~) + 2 o 

Jl v(~. y. a. ~)~2~(a. ,. ~)d.7 (17) 
o 

subject to the initial conditions 

0 (~, y, x, ~ = p(x, y, ~  (18) 

~b(x, y, x, ~) = q(x, y, a ) ,  (19) 

u (x, y, x, a) = r (x, y, a ) ,  (20) 

v (x, y, x, a) = s(x, y, a), (21) 

and the auxiliary conditions 

0 ( x , y , a , a ) = O  ( x , y , a , a ) = u  ( x , y , a , a ) = v  (x ,y ,a,  tr)=O, 

02(x, y, a, o-) = ~k2(x, y, a, a) = u2(x, y, a, a) = v2(x, y, a, tr) = 0 ,  (22) 

i fy  = 0, I. The entire set of  equations, (8)-(11), (14)-(17), is then integrated to the desired value 
of a. 

4. Validation 

We will now show that  any solution of (8)-(22) is a solution of the original system (1)-(7). First 
we will show 
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0 (x, y, a, a) = ux(x , y, a, a) (23) 

0(x, y, a, a) = v 1 (x, y, a, a) .  (24) 

Differentiating (16) and (17) with respect to x, we have 

u13 (x, y, a, a) = 2 f l u, (x, y, a, q) pzz (a, q, a)drl , (25) 

- v 1 (x, y,  a, a) r zz22 (a, ~/, a)  d~/ 
o 

and 

Vx3(X, y ,a ,a )  = u l ( x , y , a , a )  + 2 j i  ul(x,  y,a,~l)qzz(a, rl, a)d~ 

j " l vl ( x, Y, a, rl)Szzzz(a , rl, a)dq (26) - -  . 

o 

We see then by comparison with (14) and (15) that ua and vl satisfy the same differential equa- 
tions as 0 and ~O. Direct differentiation of (22) yields 

ul ( x , y , a , a ) = v l  ( x , y , a , a ) = O ,  

u12(x, y, a, o) = v~2(x, y, a, o) = 0 .  "(27) 

if y = 0, 1 or a = 0, 1, so that the auxiliary conditions also agree. To show that the initial condi- 
tions are the same, we start by differentiating (20) with respect to x, 

ua (x, y, x, o )=  rl (x, y, a ) - u 3 ( x ,  y, x, o) . (28) 

Using (10) and (16), with a = x ,  in (28) we find 

ua (x, y, x, a) = p(x, y, a) . (29) 

Using (21), (11) and (17) in the same manner we have 

vt (x, y, x, a) = q(x, y, a) . (30) 

Since the above two relations hold for all x, the equations defining u~ and v 1 are exactly the 
same as those for 0 and ~ so (23) and (24) must hold. 

We will now show that u andv satisfy the boundary conditions of (3)-(7). We start by taking 
x = 0  in (15), (17), (20), (21) and (22). Thus, u(0, y, a, a) and v(0, y, a, o-) satisfy ;1 

u3(0, y, a, a) = 2 u(0, y, a, q)Pz2(a, q, er)dq 
0 

j .x v(0,  y, a, - -  O')  d/J/ 
o 

fx 
v3(O,y,a ,a)  = u(O;.y,a,r~) + 2 u(O,y,a,  tl)q22(a,q,a)dtl 

o 

- f~ v(0, y, a, rl)Szzzz(a, r h o)dq,  (31) 
d -  

subject to 

u(0, y, 

v (0, y, 0, a) = 0 ,  (32) 
and 

u (0, y , a , ~ ) = v  (0, y , a , ~ ) = 0 ,  

u2(0, y, a, o) = v2(0, y, a, o-) = 0 ,  (33) 

if y=0 ,  1 or o-=0, 1. Eqs. (31)-(33) define a homogeneous initial value problem with zero 
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initial conditions, thus we must have 

u (0, y, a, tr) = 0 ,  

v (13, y, a, 6 )=  0,  (34) 

for all a. The rest of the conditions of (7) follow by a similar argument. 
To prove (3)-(6) we proceed as follows. We start by differentiating with respect to x. 

Ull (X, y, X, 0")= --Ul3(X , y, X, O')-~pl (X , y, 0"), (35) 

and via (23) 

u,1 (x, y,  x ,  a) = - 03 (x, y,  x ,  tr) + Pl  (x, y,  a ) .  (36) 

Using (8) and (14) with a = x  in (36) we find 

ulx (x, y, x, 6)= 6 ( y - a ) ,  (37) 

which since it is valid for all x, is (3). In a similar manner, from (30), (9) and (15) we find (5) or 

(x, y, x, 6) = o .  (38) 

To prove (4) we differentiate (37) with respect to x. 

ul l l  (x, y, x, tr) = ulla(x, y, x, a) . (39) 

Differentiating (16) twice with respect to x, we find for a=x ,  

2 u11( ,y,x, )p22( ,n,o)dr/ 
0 

f 1 - v~x (x, y, x, r/)r2222 (x, r/, a)dr/. (40) 
0 

then by (37) and (38) 

u~a(x,  y ,x ,  tr)= 2pzz(x, y, a). (41) 

Differentiating (29) twice with respect to y we find 

u122 (x, y, x, a) = p22(x, y, a). (42) 

Finally combining (39), (41) and (42) we have 

Ull  1 (X, y, X, ff)"~2U122(X , y, X, i f ) =  0 ,  (43) 

which is (4). Eq. (6) follows by similar reasoning. 
We now have to show the u and v satisfy the biharmonic equation. We start by differentiating 

(43) 

Ull l l (x ,Y,X,  tT)+2Ul122(x,y,x, cr)= --Ullla(X,y,X, 6)--2Ua223(x,y,x, ff ) . (44) 

Differentiation of (16) yields for a = x 

Uxl13(x,y ,x ,a)  = 2 uxla(x ,y ,x ,q)p2z(x ,r / ,a)dq 
0 

-- f lo v111(x, y, x, r/)r2222(X, r/, G)dr/ 

and 

Ulz2a(x,y,x,  tr) = 2 ux22(x,y,x,r/)p2z(x,r/,a)dr/ 
0 

t 1 --  v122 (x, y, x, 1//r2222 (x, r/, tr)dr/. 
0 

Combining these two equations, 

(45) 

(46) 
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~l~(x. y. x. ~)+ 2ul~(x. y. x. ~) = 2 [~111(~. y. x. ~)+ 2~1~(x .  y. ~. ~) ]p~2(x. , .  ~)~, 
0 

f 
l 

- [v l lx (x ,y ,x ,q)+2v122(x ,y ,x ,a)]=rz222(x ,  rl, tr)d q . (47) 
0 

In view of the boundary conditions, (4) and (6), (47) becomes 

Ull3(X , y, X, a)+ 2UI2z3(X, y, X, a)= rzz22(x, y, a) . (48) 

Differentiation of (20) gives us the equation 

Uzzz2(X, y, x, a) = r222z(x, Y, a) . (49) 

Combining (44), (48) and (49) we have 

ul tH (x, y, x, a)+ 2Ul~zz(X, y, x, a)+ u222z(x, y, x, a ) =  0 ,  (50) 

so that the biharmonic equation holds at the edge. We repeat the argument to show 

v i l l i (x ,  y, x, o-)+ 2Vllzz(X, y, x, o')+ v2222 (x, y, x, ~r) = 0 .  (51) 

To prove that  the biharmonic equation is satisfied at internal points, we form the two functions. 

e(x, y, a, a ) =  Uxll, (x, Y, a, o)+ 2u1122(x, y, a, a)+ uz2z2(x, y, a, a) , (52) 

fl(x, y, a, a)=/)1111 (x, y, ~/, o')-~ 2v1122 (x, y, a, a)+v2222 (x, y, a, a) .  (53) 

Clearly by (50) and (51) 

(x, y, x, G) = 0 ,  

/~ (x, y, x, a) = 0 .  (54) 

We will find initial value problems for ~ and 3. Differentiation of (52) with respect to a yields 

e3(x, y, a, o-)= ullla3(x , y, a, a)+ 2u11223(x, y, a, 6)+u22223(x , y, a, o-). (55) 

Each of the terms on the right of (55) can be evaluated by repeated differentiation of (16), i.e. 

ulll~3(x.y.a.~)= 2 Ux111(x.y.a.,)p22(a.,.~)a, 
0 

- v i l l i ( x ,  y. a . , ) r2~22(a . , .  ~ )a~ .  
0 

ullz23(x,y ,a ,~)  = 2 ul122(x,y,a,q)p22(a, tl, a)dq 
0 

f x - v~2~(x ,  y. a . . ) r 2 ~ _ ( a . , .  ~ ) a , .  (56) 
0 

Adding these terms and using (52) and (53) we have 

c~3 (x, y, a, ~) = 2 e(x,y,a,~)p22(a,e,a)dn - y,a,q)r2222(a,q,G)dtl. (57) 
0 

Similarly we find 

fl0 0{(X, y, ~3(x, y, a, a)= o~(x, y, a, o) + 2 a, rl)qz~(a, rl, a)drl 

f 1 - .~ ~(x. y. a . . 7 ) s ~ ( a .  '7. ~)a.7 �9 (58) 

From (22) we find 

~(x, y, a, a) =/ / (x ,  y, a, a) = ~2(x, y, a, a) =/~2 (x, y, a, a) = 0 ,  (59) 
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ify = 0, 1 or a = 0, I. Thus, (54), (57), and (58) and (59) define a homogeneous initial value problem 
with a zero initial condition and therefore we have 

(x, y, a, a) = O, 

fl (x, y, a, a) = O, (60) 
or  

V%(x, y, a, a) = O, 

Wv (x, y, a, o-) = O, (61) 

and the verification is complete. 

5. Conclusion 

We have shown the equivalence between a certain classical boundary-value problem and a 
certain Cauchy system. The practical importance of this result is that the Cauchy system can be 
readily treated by a number of standard numerical techniques, as opposed to boundary-value 
problems which are not in general amenable to direct numerical treatment. At the same time, 
a number of theoretical advantages are associated with Cauchy formulations, especially those 
related to the study of semi-group properties in terms of non-classical imbedding variables 
such as length, thickness or physical constants. Future papers will deal with the details of 
numerical procedures. 
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